立博官网

理化所等在超窄带发光石墨烯量子点的超分辨光
发布时间:2021-03-03 13:23    文章作者:立博官网

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  中国科学院紫金山天文台(中国科大天文与空间科学学院)2021年招收攻读博士学位研究生报名公告

  中国科学院紫金山天文台(中国科大天文与空间科学学院)2021年接收“推免生”章程

  2020年南昌大学-中国科学院稀土研究院“稀土专项”联合培养博士研究生“申请-考核”制招生公告

  超窄带发光材料在多种光电器件、激光、超分辨、成像和传感等应用中具有重要的科学价值和技术意义。碳点作为一种新型的碳纳米发光材料,因具有发光稳定性好、带隙宽度可调、双光子吸收截面积大、选择性的荧光淬灭/增强、生物相容和低毒性等优势受到广泛关注。碳点在长波长和高效率发光等方面快速发展,但在窄带发射方面的研究较少。相对于稀土材料5~15 nm和量子点材料15~30 nm的窄带发光,目前所报道的大部分碳点的发射半峰宽在40~60 nm以上,如何降低碳点的发射半峰宽成为发光碳点材料领域的关键问题和研究热点。

  近年来,中国科学院理化技术研究所特种影像材料与技术中心系统提出了二维共轭小分子化合物作为碳源制备出高效窄带长波长发光碳点的新方法(Physical Chemistry Chemical Physics2016,25002;Particle & Particle Systems Characterization2016, 811;ACSAppliedMaterials &Interfaces, 2018, 16005;Journal of Materials Chemistry C, 2018,5957;Nanoscale, 2019, 11577等)。科研人员以酞菁类平面共轭大环化合物为碳源,采用一步法制备出两种窄带发射的红光石墨烯量子点,这两种石墨烯量子点的发光半峰宽(分别为21 nm和30 nm)已达到发光材料中超窄带发射的范围。该工作为进一步开展制备超窄带发射的石墨烯量子点提供了新思路,并拓展了窄带发射石墨烯量子点在发光材料、激光发射、光路复用、生物传感、LED等方面的应用范围。

  除超窄带发光外,这两种石墨烯量子点还具有发射波长在远红光范围( 680 nm)、发射峰位置相近、激发波长和荧光寿命部分依赖等特点。基于此,理化所特种影像材料与技术中心与以色列巴伊兰大学工学院合作提出了基于超窄带发射石墨烯量子点的超分辨传感策略,并应用于光谱和空间超分辨成像传感检测。该方法无需使用光谱仪即可提取光谱信息,通过两种类型的窄带发光石墨烯量子点的独特波长和时间“特征”实现空间分离,在超分辨光谱和空间传感领域有潜在应用价值,如超分辨技术可以克服光学成像应用的光学衍射极限,有望填补电子显微镜(~1 nm)和普通可见光学显微镜(200-250nm)之间的空缺,观察到更精细的结构或更高分辨率的图像。

  上述两项研究工作得到国家自然科学基金和中科院国际人才计划-外国专家特聘研究员计划项目等的资助。

  超窄带发光材料在多种光电器件、激光、超分辨、成像和传感等应用中具有重要的科学价值和技术意义。碳点作为一种新型的碳纳米发光材料,因具有发光稳定性好、带隙宽度可调、双光子吸收截面积大、选择性的荧光淬灭/增强、生物相容和低毒性等优势受到广泛关注。碳点在长波长和高效率发光等方面快速发展,但在窄带发射方面的研究较少。相对于稀土材料5~15 nm和量子点材料15~30 nm的窄带发光,目前所报道的大部分碳点的发射半峰宽在40~60 nm以上,如何降低碳点的发射半峰宽成为发光碳点材料领域的关键问题和研究热点。

  近年来,中国科学院理化技术研究所特种影像材料与技术中心系统提出了二维共轭小分子化合物作为碳源制备出高效窄带长波长发光碳点的新方法(Physical Chemistry Chemical Physics 2016, 25002; Particle & Particle Systems Characterization 2016, 811; ACS Applied Materials & Interfaces, 2018, 16005; Journal of Materials Chemistry C, 2018, 5957; Nanoscale, 2019, 11577等)。科研人员以酞菁类平面共轭大环化合物为碳源,采用一步法制备出两种窄带发射的红光石墨烯量子点,这两种石墨烯量子点的发光半峰宽(分别为21 nm和30 nm)已达到发光材料中超窄带发射的范围。该工作为进一步开展制备超窄带发射的石墨烯量子点提供了新思路,并拓展了窄带发射石墨烯量子点在发光材料、激光发射、光路复用、生物传感、LED等方面的应用范围。

  除超窄带发光外,这两种石墨烯量子点还具有发射波长在远红光范围( 680 nm)、发射峰位置相近、激发波长和荧光寿命部分依赖等特点。基于此,理化所特种影像材料与技术中心与以色列巴伊兰大学工学院合作提出了基于超窄带发射石墨烯量子点的超分辨传感策略,并应用于光谱和空间超分辨成像传感检测。该方法无需使用光谱仪即可提取光谱信息,通过两种类型的窄带发光石墨烯量子点的独特波长和时间“特征”实现空间分离,在超分辨光谱和空间传感领域有潜在应用价值,如超分辨技术可以克服光学成像应用的光学衍射极限,有望填补电子显微镜(~1 nm)和普通可见光学显微镜(200-250nm)之间的空缺,观察到更精细的结构或更高分辨率的图像。

  相关研究成果以Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing为题,在线发表在NPG Asia Materials上,并已申请中国发明专利。理化所研究员谢政和巴伊兰大学工学院院长、教授Zeev Zalevsky为论文通讯作者,理化所硕士研究生王真为论文第一作者。

  此外,这类碳点因良好的光声特性,可应用于光声成像超分辨方面。中以双方团队通过进一步合作,将另外一类两色可逆转换碳点(绿光和红光的最高发光效率为80%,ACS Applied Materials & Interfaces, 2018, 10, 16005)应用到了光声超分辨成像中,提出一种基于多个亚像素吸收器的分离和定位的扩展分辨率成像概念,该技术提高了光声成像超分辨率。相关研究成果以Autoencoder based blind source separation for photoacoustic resolution enhancement为题,发表在Scientific Reports上。

  上述两项研究工作得到国家自然科学基金和中科院国际人才计划-外国专家特聘研究员计划项目等的资助。


立博官网

© 立博官网 版权所有 All rights reserved.
手机:13346261222 邮箱:1797060463@qq.com 技术支持: 网站地图